Combination of Augmented Reality Based Brain- Computer Interface and Comp...
Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant be...
A charge sensor integration to tunable double quantum dots on two neighbo...
Heterogeneous integration of InP and Si3N4 waveguides based on interlayer...
Fabrication and Characterization of Black GaAs Nanoarrays via ICP Etching
Impact of defect and doping on the structural and electronic properties o...
Field-Free Manipulation of Skyrmion Creation and Annihilation by Tunable ...
Flexible Sensors Based on Organic-Inorganic Hybrid Materials
Electronic Raman Scattering in Suspended Semiconducting Carbon Nanotube
High-speed operation of single-mode tunable quantum cascade laser based o...

Impact of Channel Length and Width for Charge Transportation of Graphene Field Effect Transistor



Author(s): Hosen, K (Hosen, Kamal); Islam, MR (Islam, Md. Rasidul); Liu, K (Liu, Kong)

Source: CHINESE JOURNAL OF CHEMICAL PHYSICS Volume: 33 Issue: 6 Pages: 757-763 DOI: 10.1063/1674-0068/cjcp2004055 Published: DEC 2020

Abstract: The effect of channel length and width on the large and small-signal parameters of the graphene field effect transistor have been explored using an analytical approach. In the case of faster saturation as well as extremely high transit frequency, the graphene field effect transistor shows outstanding performance. From the transfer curve, it is observed that there is a positive shift of Dirac point from the voltage of 0.15 V to 0.35 V because of reducing channel length from 440 nm to 20 nm and this curve depicts that graphene shows ambipolar behavior. Besides, it is found that because of widening channel the drain current increases and the maximum current is found approximately 2.4 mA and 6 mA for channel width 2 mu m and 5 mu m respectively. Furthermore, an approximate symmetrical capacitance-voltage (C-V) characteristic of the graphene field effect transistor is obtained and the capacitance reduces when the channel length decreases but the capacitance can be increased by raising the channel width. In addition, a high transconductance, that demands high-speed radio frequency (RF) applications, of 6.4 mS at channel length 20 nm and 4.45 mS at channel width 5 mu m along with a high transit frequency of 3.95 THz have been found that demands high-speed radio frequency applications.

Accession Number: WOS:000615095400014

ISSN: 1674-0068

eISSN: 2327-2244

Full Text:


北京市海淀區清華東路甲35號 北京912信箱 (100083)




版權所有 中國科學院半導體研究所

備案號:,京ICP備05085259-1號 京公網安備110402500052 中國科學院半導體所聲明